207 research outputs found

    Distortion of Wigner molecules : pair function approach

    Full text link
    We considered a two dimensional three electron quantum dot in a magnetic field in the Wigner limit. A unitary coordinate transformation decouples the Hamiltonian (with Coulomb interaction between the electrons included) into a sum of three independent pair Hamiltonians. The eigen-solutions of the pair Hamiltonian provide a spectrum of pair states. Each pair state defines the distance of the two electrons involved in this state. In the ground state for given pair angular momentum mm, this distance increases with increasing m|m|. The pair states have to be occupied under consideration of the Pauli exclusion principle, which differs from that for one-electron states and depends on the total spin SS and the total orbital angular momentum ML=miM_L=\sum m_i (sum over all pair angular momenta). We have shown that the three electrons in the ground state of the Wigner molecule form an equilateral triangle (as might be expected) only, if the state is a quartet (S=3/2S=3/2) and the orbital angular momentum is a magic quantum number (ML=3m;m=M_L=3 m ; m= integer). Otherwise the triangle in the ground state is isosceles. For ML=3m+1M_L=3 m+1 one of the sides is longer and for ML=3m1M_L=3 m-1 one of the sides is shorter than the other two

    Analytic Solution of a Relativistic Two-dimensional Hydrogen-like Atom in a Constant Magnetic Field

    Full text link
    We obtain exact solutions of the Klein-Gordon and Pauli Schroedinger equations for a two-dimensional hydrogen-like atom in the presence of a constant magnetic field. Analytic solutions for the energy spectrum are obtained for particular values of the magnetic field strength. The results are compared to those obtained in the non-relativistic and spinless case. We obtain that the relativistic spectrum does not present s states.Comment: RevTeX, 8 pages, to be published in Phys. Lett.

    Violation of non-interacting V\cal V-representability of the exact solutions of the Schr\"odinger equation for a two-electron quantum dot in a homogeneous magnetic field

    Full text link
    We have shown by using the exact solutions for the two-electron system in a parabolic confinement and a homogeneous magnetic field [ M.Taut, J Phys.A{\bf 27}, 1045 (1994) ] that both exact densities (charge- and the paramagnetic current density) can be non-interacting V\cal V-representable (NIVR) only in a few special cases, or equivalently, that an exact Kohn-Sham (KS) system does not always exist. All those states at non-zero BB can be NIVR, which are continuously connected to the singlet or triplet ground states at B=0. In more detail, for singlets (total orbital angular momentum MLM_L is even) both densities can be NIVR if the vorticity of the exact solution vanishes. For ML=0M_L=0 this is trivially guaranteed because the paramagnetic current density vanishes. The vorticity based on the exact solutions for the higher ML|M_L| does not vanish, in particular for small r. In the limit r0r \to 0 this can even be shown analytically. For triplets (MLM_L is odd) and if we assume circular symmetry for the KS system (the same symmetry as the real system) then only the exact states with ML=1|M_L|= 1 can be NIVR with KS states having angular momenta m1=0m_1=0 and m2=1|m_2|=1. Without specification of the symmetry of the KS system the condition for NIVR is that the small-r-exponents of the KS states are 0 and 1.Comment: 18 pages, 4 figure

    Charged particles in external fields as physical examples of quasi-exactly solvable models: a unified treatment

    Get PDF
    We present a unified treatment of three cases of quasi-exactly solvable problems, namely, charged particle moving in Coulomb and magnetic fields, for both the Schr\"odinger and the Klein-Gordon case, and the relative motion of two charged particles in an external oscillator potential. We show that all these cases are reducible to the same basic equation, which is quasi-exactly solvable owing to the existence of a hidden sl2sl_2 algebraic structure. A systematic and unified algebraic solution to the basic equation using the method of factorization is given. Analytic expressions of the energies and the allowed frequencies for the three cases are given in terms of the roots of one and the same set of Bethe ansatz equations.Comment: RevTex, 15 pages, no figure

    Wigner Crystallization of a two dimensional electron gas in a magnetic field: single electrons versus electron pairs at the lattice sites

    Full text link
    The ground state energy and the lowest excitations of a two dimensional Wigner crystal in a perpendicular magnetic field with one and two electrons per cell is investigated. In case of two electrons per lattice site, the interaction of the electrons {\em within} each cell is taken into account exactly (including exchange and correlation effects), and the interaction {\em between} the cells is in second order (dipole) van der Waals approximation. No further approximations are made, in particular Landau level mixing and {\em in}complete spin polarization are accounted for. Therefore, our calculation comprises a, roughly speaking, complementary description of the bubble phase (in the special case of one and two electrons per bubble), which was proposed by Koulakov, Fogler and Shklovskii on the basis of a Hartree Fock calculation. The phase diagram shows that in GaAs the paired phase is energetically more favorable than the single electron phase for, roughly speaking, filling factor ff larger than 0.3 and density parameter rsr_s smaller than 19 effective Bohr radii (for a more precise statement see Fig.s 4 and 5). If we start within the paired phase and increase magnetic field or decrease density, the pairs first undergo some singlet- triplet transitions before they break.Comment: 11 pages, 7 figure

    Solution of the Schr\"odinger Equation for Quantum Dot Lattices with Coulomb Interaction between the Dots

    Full text link
    The Schr\"odinger equation for quantum dot lattices with non-cubic, non-Bravais lattices built up from elliptical dots is investigated. The Coulomb interaction between the dots is considered in dipole approximation. Then only the center of mass (c.m.) coordinates of different dots couple with each other. This c.m. subsystem can be solved exactly and provides magneto- phonon like collective excitations. The inter-dot interaction is involved only through a single interaction parameter. The relative coordinates of individual dots form decoupled subsystems giving rise to intra-dot excitations. As an example, the latter are calculated exactly for two-electron dots. Emphasis is layed on qualitative effects like: i) Influence of the magnetic field on the lattice instability due to inter-dot interaction, ii) Closing of the gap between the lower and the upper c.m. mode at B=0 for elliptical dots due to dot interaction, and iii) Kinks in the single dot excitation energies (versus magnetic field) due to change of ground state angular momentum. It is shown that for obtaining striking qualitative effects one should go beyond simple cubic lattices with spherical dots. We also prove a more general version of the Kohn Theorem for quantum dot lattices. It is shown that for observing effects of electron- electron interaction between the dots in FIR spectra (breaking Kohn's Theorem) one has to consider dot lattices with at least two dot species with different confinement tensors.Comment: 11 figures included as ps-file

    A new quasi-exactly solvable problem and its connection with an anharmonic oscillator

    Full text link
    The two-dimensional hydrogen with a linear potential in a magnetic field is solved by two different methods. Furthermore the connection between the model and an anharmonic oscillator had been investigated by methods of KS transformation
    corecore